- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ardywibowo, Randy (3)
-
Qian, Xiaoning (2)
-
Boluki, Shahin (1)
-
Cheng, Yu (1)
-
Dadaneh, Siamak Zamani (1)
-
Gui, Shupeng (1)
-
Huang, Shuai (1)
-
Liu, Ji (1)
-
Xiao, Cao (1)
-
Zhou, Mingyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Continual Learning (CL) is the problem of sequentially learning a set of tasks and preserving all the knowledge acquired. Many existing methods assume that the data stream is explicitly divided into a sequence of known contexts (tasks), and use this information to know when to transfer knowledge from one context to another. Unfortunately, many real-world CL scenarios have no clear task nor context boundaries, motivating the study of task-agnostic CL, where neither the specific tasks nor their switches are known both in training and testing. This paper proposes a variational architecture growing framework dubbed VariGrow. By interpreting dynamically growing neural networks as a Bayesian approximation, and defining flexible implicit variational distributions, VariGrow detects if a new task is arriving through an energy-based novelty score. If the novelty score is high and the sample is “detected" as a new task, VariGrow will grow a new expert module to be responsible for it. Otherwise, the sample will be assigned to one of the existing experts who is most “familiar" with it (i.e., one with the lowest novelty score). We have tested VariGrow on several CIFAR and ImageNet-based benchmarks for the strict task-agnostic CL setting and demonstrate its consistent superior performance. Perhaps surprisingly, its performance can even be competitive compared to task-aware methods.more » « less
-
Boluki, Shahin; Ardywibowo, Randy; Dadaneh, Siamak Zamani; Zhou, Mingyuan; Qian, Xiaoning (, International Conference on Artificial Intelligence and Statistics)
-
Ardywibowo, Randy; Huang, Shuai; Gui, Shupeng; Xiao, Cao; Cheng, Yu; Liu, Ji; Qian, Xiaoning (, Journal of Healthcare Informatics Research)
An official website of the United States government

Full Text Available